Data Science Manager, Ads

Data Science Manager, Ads

“The front page of the internet," Reddit brings over 430 million people together each month through their common interests, inviting them to share, vote, comment, and create across thousands of communities. Come for the cats, stay for the empathy.

We are looking for a Manager to be a part of the Ads Data team and lead a small group of Modeling Data Scientists. You will work closely with EMs, engineers and product owners from our Ads team to optimize ads delivery and auction systems. In addition to strong modeling skills, this person has a solid business acumen and understands what is important to advertisers. 

Responsibilities:

  • This will be a player-coach role that will have a heavy component of hands-on modeling work along with managing a small team of 3-4 Data Scientists at the beginning (and scaling in the future).
  • You will build optimization algorithms that improve ad yields and efficiencies. Our optimization models were hugely successful in the last 12 months and as a result we are increasing our investment in this area.
  • Along with modeling, you will be a key strategic player in defining the roadmap for the Modeling efforts for the entire Ads Org. Your roadmap will not only achieve immediate business goals, but also dictate our long term strategy for Optimization and Marketplace efforts.
  • Manage and nurture a team of talented Data Scientists and have a keen interest in shaping their careers.
  • Over the last year, we built CPC (cost per click), CPI (cost per install), Generalized pCVR, Ad level optimization and User lookalikes models. You will work on improving existing optimization models along with developing new models from scratch for a variety of upcoming product launches.
  • Build and improve Machine Learning algorithms that match ads to the most relevant users. Examples of the algorithms/techniques used are LR, GBDT, RF, Hyper parameter tuning, Thomson Sampling, Monte Carlo simulations, semantic embedding models etc.
  • Design and build a platform for rapid model iteration and feature engineering at scale. Some of our optimization models are iterated on and deployed in production every 2 weeks!
  • Be involved in all phases of modeling such as ideation, offline modeling, online implementation, experimentation, deploy and post-launch monitoring/measurements.
  • This role will have a lot of overlap with other Machine Learning Engineer roles, but will differ in a couple of areas. First is that you will work mainly on offline modeling and rely on engineers to productionalize your models. Secondly, you will have a keen interest in the collection and quality of underlying data, along with working on ETLs and data aggregations.
  • Serve as a thought-partner for Product Managers, Engineering Managers and leadership in influencing the Monetization roadmap and strategy for Reddit by identifying opportunities through deep-dive analyses and/or modeling.
  • Work closely with our Sales and Marketing partners so the ads are set up in a way that amplifies the benefits of your optimization models.

What We Can Expect From You:

  • Master’s or PhD degree in a quantitative major (e.g., mathematics, statistics, economics, finance, computer science). 
  • Proficiency in Machine Learning
  • 2 years of Prior experience working as a Tech Lead or a Data Science Manager
  • 5+ years of experience in quantitative/modeling roles, preferably for a consumer-facing service/app
  • Proficiency with statistical analysis and programming languages (Python, SQL)
  • Understanding of experimentation and causal inference analyses
  • Experience building Ads optimization models is preferred but not required
Logos/outerjoin logo full

Outer Join is the premier job board for remote jobs in data science, analytics, and engineering.